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SCIENCE FOR SOCIETY In the quest for a sustainable future, understanding the relationship between de-
mographic change and climate change becomes paramount, as demographic shifts directly impact energy
consumption patterns and the effectiveness of interventions. This study reveals how demographic transi-
tions in Japan influence household-level energy consumption and greenhouse gas emissions. Different
household types exhibit varied patterns in emissions and the adoption of green technologies such as pho-
tovoltaics and new energy vehicles. This is shaped by factors such as people’s age, household size, and
income. Demographic transitions toward smaller and elderly households will complicate achieving decar-
bonization in the household sector. The work emphasizes that a sustainable, low-carbon future requires a
deep understanding of societal shifts and needs. It calls for tailored approaches in the household sector to
manage climate change, particularly in societies experiencing demographic transitions.
SUMMARY
The household sector is a major source of greenhouse gas (GHG) emissions and is key to achieving decar-
bonization targets. Household characteristics, influenced by demographic transitions such as population ag-
ing and shrinking, have a profound impact on energy use and emissions. This study explores how demo-
graphic changes in Japan may affect long-term emission mitigation in the household sector through the
adoption of photovoltaics (PVs) and new energy vehicles (NEVs) under various scenarios for 2040. Using a
comprehensive survey of 9,996 households, we develop a nuanced typology of households to understand
variations in emissions and mitigation technology adoption. Household size and age emerge as key factors
influencing emissions. The findings reveal that the increasing prevalence of smaller and elderly households
may impede emissionmitigation efforts in Japan, posing substantial obstacles to achieving long-term decar-
bonization goals in the household sector.
INTRODUCTION

Containing the increase in global average temperature to well

below 2�C above pre-industrial levels requires substantial

cross-sectoral efforts.1 These efforts include extensive reduc-

tions in the use of fossil fuels and the promotion of electricity

generation through renewable and carbon-neutral pathways.2,3

Many of these efforts have focused on the supply side (e.g., in-

dustrial and energy generation sectors) and have emphasized

increasing energy efficiency4,5 or finding/mobilizing green and

renewable energy sources.6,7

However, in the post-Paris-Agreement era, there have been

strong calls to also design effective emission mitigation plans
Cell Report
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for the final demand side. For example, there have been

increasing efforts to promote the uptake of green technologies

and enable the transition to low-carbon lifestyles,8–10 especially

in the household sector.10–15 The reason for this is that house-

holds, by accounting for a large fraction of final energy consump-

tion and total greenhouse gas (GHG) emissions, have a high

emissions mitigation potential.16–19 For example, the household

sector in the US contributes nearly 80% of total GHG emis-

sions,8,20,21 encompassing both direct emissions from home en-

ergy use and indirect emissions due to the consumption of

goods, services, and secondary energy (e.g., electricity). In

Japan, the household sector is responsible for >60% of total

GHG emissions22–24 and is expected to contribute nearly 50%
s Sustainability 1, 100053, March 22, 2024 ª 2024 The Author(s). 1
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of the emission reduction commitment under the Paris Agree-

ment.25 Despite the intense efforts to boost household-level de-

carbonization measures in many countries,25–27 the household

sector poses two major challenges to their effective design

and implementation.

First, it is widely accepted that emission mitigation technolo-

gies that target households or individual consumers are not

universally accepted due to the variability in household de-

mand,28,29 technology acceptance levels,30,31 and afford-

ability32,33 across demographic groups. At the same time, such

mitigation efforts need to consider issues of fairness (e.g., cli-

matic justice,19,34 inequality13,35), feasibility,36,37 and effective-

ness. Here, ‘‘climatic justice’’ refers to fair treatment for all for

climate change mitigation, such as promoting equitable access

to technologies and designing inclusive policies, while

‘‘inequality’’ denotes unequal energy consumption and emis-

sions across socioeconomic groups, emphasizing disparities

and the need for tailored mitigation approaches. Arguably, the

design and implementation of feasible and effective mitigation

measures for the household sector are highly reliant on a good

understanding of household consumption preferences and

how such preferences are affected by household characteris-

tics. Previous studies have identified that very diverse household

characteristics, such as income, age, composition, and location,

can affect energy demand and consumption behavior.38–46 For

example, affluent families and elderly families tend to have higher

energy consumption,19,33,47,48 and household size can also

determine household energy consumption.49 Furthermore,

certain lifestyle decisions vary between age groups. For

example, households with school-aged children have a higher

electricity demand for lighting while elderly households have a

higher electricity demand for TV.46 Such patterns imply that

households with different demographic and socioeconomic

characteristics also have different GHG emissions and levels of

acceptance of end-use energy technologies, not least due to

their differentiated needs and financial status.48,50

Second, the promotion and adoption of decarbonization mea-

sures for the household sector do not happen in isolation.

Rather, they are closely linked to multiple unfolding demo-

graphic,51,52 socioeconomic, 9,53 and environmental transi-

tions.7,11,54 One of the most critical demographic transitions is

population aging and shrinking, which affects, among others,

household composition, age distribution, size, and lifestyles,

with major implications for the adoption of end-use energy mea-

sures49 and sustainability in general.55 Population aging is now

observed in most developed countries and a growing number

of developing countries16,18,56–59 (see Figure S1, supplemental

information), and it has significant ramifications for energy use

and GHG emissions.58,60–63

Facing these two challenges, though previous studies have

explored the consequences of household characteristics and

demographic change for energy technology adoption and

GHG emissions, they have often obtained mixed results due to

methodological differences and limited data availability.40,63–69

In general, there is a wide acceptance that households with

higher income, elderly members, and small sizes are more likely

to have higher GHG emissions, partially due to the scale effect of

household energy consumption and lifestyles (e.g., the longer
2 Cell Reports Sustainability 1, 100053, March 22, 2024
time spent at home among elderly individuals).13,40,70–72 Further-

more, household shrinking might prevent the effective scaling up

of relevant mitigation measures,18,71,73,74 which is particularly

important for countries experiencing shrinking in household

numbers and sizes. These facts suggest the strong need for

detailed studies that estimate differentiated emissions reduction

potentials within the household sector, taking into account the

effects of household characteristics and technology acceptance

in the context of demographic transitions. However, there are

some very important challenges and knowledge gaps.

First, there is a lack of nuanced household taxonomies, as

most studies have relied on household taxonomies across single

dimensions (e.g., grouping by income, age, family size, or spe-

cific lifestyles and energy consumption behaviors). Furthermore,

grouping and taxonomy decisions are often arbitrary and based

on researchers’ experience and the focus of the study rather

than a strong understanding of how multiple intersecting house-

hold characteristics affect energy consumption and emissions.

For example, although studies have explored how heterogeneity

in household characteristics affects energy use patterns75,76 and

the adoption of mitigation technologies,76,77 most studies have

relied on taxonomies that are unidimensional and/or subjective.

Examples are studies finding generally higher emissions from

more affluent, elderly, and smaller households9,78–80 that rely

on a manual approach and/or subjective decisions for the divi-

sion of the groups. This approach might create biases or fail to

provide nuanced information about the factors affecting energy

use and emissions, which in turn might prevent the development

of appropriate mitigation policies.

Second, despite the clear trends toward population aging and

shrinking in many of the highest-emitting economies, there is a

general lack of robust studies exploring how demographic tran-

sitions intersect with decarbonization efforts in the household

sector. Although some studies have explored historical patterns

in how population aging and shrinking have affected energy use

and GHG emissions,51,53 there are few studies that have pro-

vided comprehensive and robust projections.9,81 One significant

challenge here is the difficulty of combining population projec-

tions with data on household-level mitigation technology adop-

tion and energy consumption patterns.

Here, we explore how demographic transitions associated

with population aging and shrinking might affect long-term

climate change mitigation and decarbonization efforts in the

household sector. First, we use data mining and a multi-dimen-

sional clustering approach to create a household taxonomy to

understand differentiated technology adoption and emission

patterns within the household sector. We use data from an

extensive national household survey on energy consumption

and emissions (which also includes detailed information on pri-

vate transport). Second, we match this taxonomy with future

population projections to estimate how demographic transitions

influence the adoption of climate changemitigation technologies

at the household level and their potential effect on emissions

from the household sector as a whole. We do so for a series of

adoption and energy production scenarios for the year 2040.

We focus on Japan, which is an ideal case study. Japan is

currently the third-largest economy and the fifth-largest GHG

emitter globally, and has recently made strong political
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commitments to decarbonize by 2050.82 The country is also

experiencing profound demographic changes that are expected

to accelerate. Single-person households already account for

>35% of the entire population (expected to increase to >50%

by 203583), while the national population aging and shrinking

rates are some of the highest in the world.40,67,68 For each of

the identified household groups, we explore the adoption rates

and performance of the two main emission mitigation measures

currently promoted in Japanese households, namely roof solar

photovoltaics (PVs) and new energy vehicles (NEVs).84–87 For

the six study groups, we explore patterns for the 2017–2018

period and future trajectories up to 2040 based on the expected

demographic transitions in Japan. Overall, this study can provide

valuable information for other major economies that are increas-

ingly facing profound demographic transitions55 in the next few

decades.

RESULTS

Differentiated emission patterns between groups
The clustering analysis performed, using the least absolute

shrinkage and selection operator (LASSO) model, identified the

fivemost important variables (froma total of 24 variables) affecting

direct energy use and related GHG emissions. These variables

included income, household size, average household age, driving

demand, and whether the household contains children (see

Table S1, supplemental information). We use these variables to

generate a household taxonomy that consists of six groups that

have the largest disparity in direct energy use and related emis-

sions. Figure S2 in the supplemental information provides a

detailed description of each of the six groups in the taxonomy.

Figure 1A compares the emissions across the six household

groups. Here, we find that middle-aged, very high-income

households with children (HFK) have the highest emissions

compared with any other group. In addition to income, we find

that lower-income, elderly single-person households (LES) and

lower-income, single-person households (ULS) have even higher

per capita emissions than middle-income (MCK) and higher-in-

come (UHFK) groups (see the pink bars in Figure 1B). It is also

notable that high-income extended families (UHBF) exhibit emis-

sions levels that are relatively high, falling between the aforemen-

tioned two groups.

Figure 1B suggests that home appliances and transport ac-

count for the highest share of household emissions for all groups

(see the outer circle in Figure 1B). For each group, except for the

HFK group, emissions from appliances and vehicles account for

>60% of overall emissions. However, for the HFK group, space

heating is the largest source of emissions (36.0%), followed by

appliances (24.3%) and transport (21.7%). For lower-income

elderly single-person households (LES) and lower-income sin-

gle-person households (ULS), appliances account for most

emissions, followed by transport and space heating. Notably,

Figure 1B shows that for households with children (e.g., HFK,

UHFK, and UHBF), >30% of their emissions are from transport,

indicating their higher propensity for a more car-oriented

lifestyle.

Examining fuel consumption (see the inner circle of Figure 1B),

we find great kerosene demand for space heating from lower-in-
come elderly single-person households (LES) and high-income

extended families (UHBF). Although electricity generally tends

to be the main fuel for space heating for most groups, kerosene

is also very prevalent, especially in the mountainous regions of

the country.88,89 In contrast, a large fraction of the emissions of

the HFK group come from space heating. However, this group’s

emissions are mainly from electricity-based heating, while the

electricity-related emissions are as much as 2.17 times greater

than those of the LES group.

Overall, the results above provide two important clues for our

subsequent analysis. First, examining the total emissions of each

of the six groups, we see that groups with higher income and

high driving demand generally tend to have the highest levels

of emissions. However, the groups with the second-highest

levels of emissions are not necessarily those with high income;

rather, they are single-person households and/or dominated by

elderly people. For example, low-income single-person elderly

households (LES) and low-income single-person middle-aged

households (ULS) have notably high per capita emissions. This

finding provides an initial hint that the unfolding demographic

transitions toward an aging and shrinking population create

certain pre-conditions for high per capita emissions considering

the current trends in Japan.

Second, the factors that influence the emissions of the four

highest-emitting groups (i.e., HFK, LES, UHBF, and ULS) differ

significantly (see Figure 1B). For example, space heating domi-

nates the emission profile of HFK, while appliance use domi-

nates the emissions profiles of LES and ULS. Conversely, a sig-

nificant fraction of the emissions of UHBF come from kerosene

for space heating (17%) and gasoline due to high dependence

on private transport (31%). These findings can be explained by

the fact that 78% of the households characterized as UHBF

come from mid- and small-sized cities away from large metro-

politan areas (see Table S2, supplemental information). Hence,

one plausible explanation could be the longer commuting dis-

tances to employment centers in metropolitan areas. Addition-

ally, lifestyle factors in these regions, such as a higher reliance

on personal vehicles due to less accessible public transporta-

tion, might contribute to increased transport emissions.

Adoption of green technologies and emission mitigation
potential
PVs and NEVs are the two most popular types of green technol-

ogies currently promoted and adopted by Japanese households.

Although their penetration rates are low for some groups (espe-

cially for NEVs) (Table S6, supplemental information), it is crucial

to understand their current adoption rates and emissions mitiga-

tion potential before understanding how demographic transi-

tions might affect them. To note, in our examination of emissions

differentials between NEV adopters and non-adopters, the com-

parison was conducted exclusively among households that

possess at least one vehicle, thereby providing a more accurate

assessment of the impact of NEVs on household emissions.

Figure 2A suggests that most household groups that adopt

PVs have lower per capita emissions than their counterparts.

For example, the per capita emissions of households adopting

PVs are 16.0% and 27.3% lower, respectively, than those of

households without PVs for groups with larger sizes, such as
Cell Reports Sustainability 1, 100053, March 22, 2024 3
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Figure 1. Per capita household emissions for the six household groups

(A) shows the total per capita household emissions from each of the six groups in our taxonomy. (B) shows a decomposition of household emissions by household

activity (outer circles) and fuel (inner circles).
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high-income households with children (UHFK) and high-income

extended family households (UHBF). The exception is lower-in-

come single-person households (ULS) and low-income single-

person elderly households (LES). For ULS, the PV adopters

emit >55.8% more than non-adopters. Notably, here, the in-
4 Cell Reports Sustainability 1, 100053, March 22, 2024
house electricity consumption from PV is not included in the total

emissions. Furthermore, the emissions of households adopting

PVs are marginally higher than those of non-adopters within

the LES group (Figure 2A). This relatively counter-intuitive result

might be due to two factors: (1) low overall PV adoption rates



A

B

Figure 2. Direct emission reductions for the six household groups due to the adoption of PVs and NEVs (in 2017–2018)

(A) highlights the total differences in direct per capita emissions for PV adopters and non-adopters within each household group, while the five sub-figures

indicate the differences in direct per capita emissions between PV adopters and non-adopters for different household activities. (B) highlights the total difference

in direct per capita transport emissions for NEV adopters and non-adopters within each household group, while the three sub-figures indicate differences in direct

per capita emissions between NEV adopters and non-adopters based on driving frequency, driving distance, and the number of vehicles owned per household.
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Figure 3. Effects of demographic change on direct emissions from the household sector

(A)–(F) show the direct emissions of each group under the baseline scenario and the reference scenario (dynamic population structure scenario) (see ‘‘research

approach’’ for the scenario descriptions and underlying assumptions). The percentages presented above the bars in the figures denote the projected contribution

of each household group to the total carbon emissions from the household sector for a given year, with the sum of the contributions from all groups equating to

100% for any specified year within the scenario, and the values for the baseline scenarios are the average values among analyzed years. The fractions of

household groups under the baseline scenario are assumed to be the same as for the 2017–2018 period, while the fractions for each group and year under the

reference scenario are allocated following the process outlined in ‘‘future prevalence of the study groups.’’ (G) depicts the per capita emissions for the overall

household sector from 2018 to 2040 under 12 scenarios of adoption of different mitigation technologies. The black line indicates the emission increase caused by

(legend continued on next page)
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within these groups (possibly due to low homeownership), which

might result in an insufficient sample for analysis (Table S6, sup-

plemental information); and (2) the specific combination of activ-

ities and fuels, which might not (see below).

The reasons for these differences in emission patterns depend

on the group. In particular, PV adopters in lower-income

single-person households (ULS), lower-income elderly single-per-

son households (LES), and middle-aged very high-income house-

holdswithchildren (HFK) tend tohavehigheremissions fromappli-

ance use than non-adopters (Figure 2A). This result is also

observable for water heating, as well as water heating for the

ULS group. However, PV adopters in all other groups generally

tend to have lower per capita emissions from other household ac-

tivities compared with non-adopters. PV adoption in groups char-

acterized by larger family sizes (whether extended or nuclear fam-

ilies), such as UHFK, UHBF, or even HFK, is associated with a

higher emission reduction potential for all household activities.

These groups with larger families tend to benefit from adopting

PVs to offset their consumption of electricity or the use of other

fuels, especially for space heating and water heating.

Figure 2B shows the emission reduction effect of NEV adop-

tion for each of the six household groups. Importantly, the cur-

rent NEV adoption rates for most groups are <2% (Table S6,

supplemental information), which may affect the accuracy of

the results and should be taken into account. However, there

are some exciting insights already observable for future promo-

tion efforts, especially in the context of demographic transitions.

First, the results show that the adoption of NEVs tends to lower

the total direct emissions for most groups because the use of

NEVs reduces the fossil fuel consumption of traditional vehicles.

Nevertheless, for middle-aged very high-income households

with children (HFK), direct emissions double when NEVs are

adopted (116.2% higher), which is also the case for low-income

single-person elderly households (LES). For the former, this

finding reflects the generally high levels of NEV adopters in terms

of driving distance, driving frequency, and the number of vehi-

cles owned (Figure 2B). Beyond the generally high transport de-

mand within this group, many HFK households are also highly

likely to own multiple cars. Conversely, for LES, this increase in

emissions reflects the generally higher distance driven by NEV

adopters, as households in this group tend to own only one

car. For the other groups, households adopting NEVs tend to

emit significantly less, with some interesting patterns within

groups. Lower-income (ULS) and mid-income (MCK) house-

holds adopting NEVs have higher driving frequencies and dis-

tances compared with those without NEVs, which is completely

different compared with higher-income groups (i.e., UHFK and

UHBF). This finding might reflect both the fact that NEVs pur-

chased by lower-income groups will be used as the main vehi-

cles and the possibly lower fuel cost of driving such vehicles,

which might be more affordable for lower-income groups. For
demographic changes (reference scenario), while the four groups of scenarios (in

multiple combinations of decarbonization measures and ambition levels (see s

experimental procedures). Here, L_CP refers to a linear recurrence scenario in 204

be achieved in 2050, considering the integration of the clean grid and PVs, while

future scenario. Additionally, A_CP and A_N denote the ‘‘ambitious target’’ in whic

the adoption of the clean grid and PVs and utilizing NEV technology, respectivel
example, in terms of the average driving distances of the LES

and ULS groups, households with NEVs drive approximately

10,000 km/year and 9,667 km/year, respectively, and these dis-

tances are higher than those driven by households without NEVs

in the respective groups by 205% and 91.5%, respectively.

Effects of demographic transitions on emissions
In the previous section, we estimated the current per capita miti-

gation potential (in 2017–2018) of green technology adoption for

the six household groups. Here, we explore the overall future

reduction potential, considering the expected demographic

change over the 2025–2040 period and structural changes in

the energy systems through regressions on group-level per capita

emissions under different scenarios (see ‘‘research approach’’).

Figures 3A–G show, for all six groups, the projected differ-

ences in their contribution to future emissions from the entire

household sector based on different population structures, for

the baseline scenario and the reference scenario. In the baseline

scenario, we assume the current demographic structure for

2040, meaning that the proportion of the six household groups

within the overall population remains constant. In contrast, the

reference scenario anticipates dynamic demographic changes,

adjusting for shifts in these proportions over time. Moreover,

the analysis extends to four additional scenarios, as illustrated

in Figure 3G with purple, orange, green, and blue lines. These

scenarios not only reflect dynamic demographic evolution but

also incorporate a variety of mitigation measures and structural

adjustments in the energy system, offering a broader perspec-

tive on potential future developments.

When trying to understand the factors dictating the differences

among the different scenarios outlined above, Figures 3A–3F

and the black line in Figure 3G suggest that for each of the future

study years, the emissions from the increasing prevalence of sin-

gle-person and elderly households (i.e., ULS and LES) cannot be

fully countered by the reduced prevalence of households with

larger household sizes (i.e., UHFK and UHBF). Thus, while the to-

tal direct emissions from the household sector in Japan are likely

to gradually decline owing to the declining population (as shown

in Figures 3A–F), the actual average per capita emissions are

projected to increase (see the black line in Figure 3G). This

finding reflects the strong expected demographic transitions in

Japan. Due to the demographic transitions between 2025 and

2040, the emissions from the increasing prevalence of LES and

ULS households in the national population will contribute to

over 21.1 million and 9.2 million more tonnes of CO2 on average

per 5 years, respectively, while the decreasing prevalence of

UHFK and UHBF households will make their emissions decline

by only approximately 13.7 million and 8.3 million tonnes of

CO2 on average per 5 years, respectively.

When considering these trends and the differentiated adop-

tion rates of mitigation technologies outlined in the previous
purple, orange, green, and blue lines) reveal the reduction potential brought by

cenario explanation in ‘‘research approach’’ and Section S4, supplemental

0, where we assume that the achievement of the emission reduction target will

L_N refers to realizing the same target with the NEV technology adopted in the

h Japan achieves the 2050 emission reduction target in advance (in 2040) with

y.

Cell Reports Sustainability 1, 100053, March 22, 2024 7
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section, the results suggest that emissionmitigation efforts in the

household sector will be hindered by the increasing prevalence

and related emissions of single-person and elderly households.

Specifically, this is because PVs and NEVs do not constantly

show substantial emission reduction potential for groups such

as ULS and LES, which are expected to become more prevalent

in the future population (see Figure 2). This is because ULS

households have a higher demand for electric appliances, space

cooling, and water heating, as elderly people are sensitive to

temperature variance and mostly use out-of-date home appli-

ances (sometimes for more than 15 years). 41,90 Furthermore,

both elderly and single-person households tend to live in houses

characterized by worse thermal insulation (e.g., wooden build-

ings).91 Therefore, in both winter and summer, such families

will need more energy to ensure in-house temperature comfort.

Similarly, NEV adoption might not have significant mitigation

benefits for the HFK group compared with other groups because

such high-income nuclear families often have multiple vehicles

and the highest driving frequency (7 days/week). A detailed dis-

cussion about the reduction potential of PVs and NEVs in

different household segments can be found in Figure S3 in the

supplemental information.

The results indicate that in the forthcoming decades, while the

total direct emissions from the household sector in Japan are

likely to gradually decline owing to the declining population

(Figures 3A–F), the actual average per capita emissions for the

household sector are projected to increase by 8.5% between

2018 and 2040, considering the expected changes in household

structure in the reference scenario if any additional technology

adoption is excluded (see black line in Figure 3G). However, if

we follow the linear target scenario, the adoption of PVs (as

well as lower grid emission factors) and NEVs can reduce emis-

sions by 0.26 tCO2 per capita (approximately 11.4%) in 2040.

Due to the anticipated higher mitigation potential of household

PVs in the future, they are expected to offer a slightly greater

emission reduction, by an additional 0.01 tCO2 per capita,

compared with NEVs. Additionally, under the ambitious target

scenario, where technology adoption is further accelerated,

the emission intensity is projected to decrease by 0.31 tCO2

per capita. Overall, due to this trend of population aging and

shrinking, although penetration rates of mitigation technologies

are expected to grow (alongside improvements in energy effi-

ciency in appliances and energy production), the mitigation ex-

pectations will be partially countered.

DISCUSSION

Arguably, the nuanced understanding of energy consumption

and emission patterns, as well as the propensity to adopt green

technologies, is a prerequisite for designing effective and fit-for-

purpose measures to influence transitions to low-carbon life-

styles and to ultimately achieve decarbonization in the house-

hold sector.70,92,93 This is because household characteristics,

such as age, income, and household composition, affect not

only energy use and emissions9,21 but also the acceptance of

different emission mitigation technologies.9,93 At the same

time, demographic transitions might drastically alter some of

these household characteristics (e.g., age, composition) at the
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national scale, essentially affecting the overall emissions of the

household sector.61,69 With many countries around the world

currently experiencing rapid and profound demographic transi-

tions, as exemplified by population shrinking and/or aging55

(see also the introduction), it has become critical to understand

how these transitions will affect the prevalence of households

with different characteristics, which essentially dictate different

energy use and emission profiles and different propensities to

adopt mitigation strategies.

Recognizing the complexity of household energy consump-

tion and emissions, we adopted a multi-stage approach to: (1)

develop a multi-dimensional household typology in relation to

households’ energy use and emissions (Figure 1), (2) estimate

the current variability in emissions and potential emission reduc-

tions for each group based on the adoption and non-adoption of

mitigation technologies (specifically PVs and NEVs) (Figure 2),

and (3) explore the sensitivity of future emission estimations for

the household sector in the context of unfolding demographic

transitions, and projected the variance in per capita emissions

by considering technological development and demographic

change (Figure 3). In the remainder of this section, we provide

an overview of our key findings and their implications.

Regarding the first stage, it is apparent that income has an

impact on both emissions and the adoption of mitigation tech-

nologies. However, various demographic factors, including age

and household composition, also exert a considerable influence.

It is plausible that these characteristicsmay demonstrate endog-

enous correlations, leading to a synergistic effect on household

emissions. This is evidenced by the fact that higher-income

households do not always emit more and that many lower-in-

come households sometimes have high emissions as well,

possibly due to their reliance on low-efficiency appliances.94

Our integrated clustering analysis demonstrates that in Japan,

family size, the number of children, average age, income per

capita, and driving frequency aremajor factors that affect energy

use and direct emissions. These factors have been employed to

develop a household typology that provides insights into trends

in the Japanese household sector, as illustrated in Figure 1.

In the second stage, we find that the adoption of PVs and

NEVs is both differentiated and has different emission mitigation

potentials across the different household groups (Figure 2). This

finding is largely attributable to the variability in energy demand

for different household activities within each group (Figure 1).

Although PV and NEV adopters tend to have lower emissions

than non-adopters, there are some exceptions. Notably, in

some groups, PV adopters exhibit higher emissions from appli-

ance use (Figure 2A). This finding possibly indicates the exis-

tence of rebound effects, whereby households that adopted

PVs for energy savings might end up increasing electricity use

and associated emissions.95,96 Similarly, although we observe

higher emissions from NEV adopters in some groups, we cannot

definitively conclude whether this finding is due to rebound ef-

fects. Although driving distance and car use might be higher

among adopters in certain cases, the number of vehicles owned

tends to be higher as well (Figure 2B). In addition, we find that the

emission reduction potential in lower-income groups by adopt-

ing NEVs is more prominent than in higher-income groups, but

their lower adoption rate underscores a potential barrier to
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widespread NEV uptake. Recognizing this disparity, it is crucial

for policymakers to consider targeted incentives or subsidies

that lower the entry barriers for NEV adoption in low-income

households. In conclusion, the current mode of NEV promotion

seems to have stimulated only higher-income groups to adopt

NEVs (often as a secondary means of mobility), rather than sig-

nificant adoption toward transport decarbonization. Therefore,

policy interventions designed to bridge this adoption gap can

play a vital role in accelerating the transition toward a low-carbon

economy.

Regarding the third stage, we observe the impact of different

household types on future emission projections for the house-

hold sector (Figures 3A–3F). We believe that, in the context of

the profound demographic transitions currently observed in

Japan and other developed countries (see the introduction),

multi-dimensional household typologies, such as the one devel-

oped in this study, can increase the accuracy of emission projec-

tions. This can be appreciated when understanding the

cascading effects of aging on emissions and the adoption of

mitigation technologies. Currently, 47.1% of households in

Japan can be characterized as aged (>65 years old), of which

57.8% consist of fewer than 2 persons.90 Upon reaching retire-

ment age (which is presently set at 65 years in Japan), household

income experiences a substantial decline due to the depen-

dence on pensions, which offer significantly lower remuneration

than salaries. This decline in households’ income both reduces

their ability to adopt emission mitigation technologies such as

PVs or NEVs (Figure 2) and increases their dependency on

low-efficiency home appliances. According to a survey conduct-

ed by the Ministry of Economy, Trade, and Industry (METI),

households composed of elderly individuals were found to

possess a larger number of outdated appliances compared

with younger generations, with some of these appliances being

utilized for more than 15 years. These old appliances collectively

increase the emissions of such households to levels almost com-

parable to the emissions of households with higher sizes and in-

comes (Figure 1), being positioned only below very high-income

households.11,13

Finally, there are signs that the anticipated demographic shift

toward smaller and older households is likely to pose obstacles

to achieving emission reductions within the household sector. It

appears that irrespective of the scenario of PV and NEV adop-

tion, per capita emissions are expected to exhibit a slight in-

crease over time (Figure 3G). This increase is driven by the

increasing numbers of these types of households, which tend

to have relatively high emissions (Figure 1) and lower adoption

rates of emission mitigation technologies (Figure 2), in the future

population (Figures 3A–F). Furthermore, Figure 3G reveals a cur-

rent disparity between the goals set by the Japanese govern-

ment (see planned in Figure 3G) and the existing decarbonization

pathway designed for developed countries (see low energy de-

mand [LED] in Figure 3G). Even after including a more ambitious

scenario (see accelerated in Figure 3G) beyond the Japanese

government’s documented goals, it is evident that the country

is still lagging behind the targets set for developed countries in

previous studies, such as the LED scenario. Consequently, to

achieve the LED scenario as the next target, the current rate of

promotion for PVs and NEVs will need to be accelerated by
more than 10 years, which would entail reaching the planned

rate of promotion two decades earlier. In light of the observations

above, it is obvious that to achieve decarbonization in the house-

hold sector, there should be a conscious effort to enable groups

in the sector to reduce their emissions. Doing so can be achieved

through a combination of measures that seek to enhance the ef-

ficiency of their energy use,97 reduce the emission intensity of

their energy sources,69,94 and accelerate the achievement of

planned NEV and PV promotion goals.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by Yin Long (longyinutokyo@gmail.com).

Materials availability

This study did not generate new unique materials.

Data and code availability

The dataset for energy use behavior comes from a nationally representative sur-

vey conducted by the Ministry of Environment, Japan. We received special

permission to use the rawdata, whichwere analyzed subject to certain confiden-

tiality constraints. The details of the dataset can be accessed from https://www.

env.go.jp/earth/ondanka/ghg/kateiCO2tokei.html. The homepage of this repre-

sentative survey is: http://www.env.go.jp/earth/ondanka/kateico2tokei/index.

html. The aggregated results can be found in e-Stat, the portal site of official sta-

tistics of Japan: https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00

650408&kikan=00650&result_page=1. For the future population projections, we

used secondary data collected by the Government of Japan: https://www.stat.

go.jp/data/jinsui/index.html. The structure of the population projection data can

be found in Table S7 in the supplemental information. For the purpose of replica-

tion and transparency, we have uploaded the major body of scripts and interme-

diate data onto GitHub: https://github.com/wuyi0614/japan-hce-footprint. The

repository is publicly accessible, and contains instructions about how to replicate

all the results in our paper.

Research approach

For this study, we follow three main research steps: (1) delineate study groups

by developing a household taxonomy (step 1), (2) estimate household emis-

sions for the study groups (step 2), and (3) establish different scenarios for pro-

jecting future emission reduction potentials for the household groups (step 3).

Notably, in step 3, by focusing on the penetration rates of mitigation options

and estimating the ratio of adopter and non-adopter households in terms of

emission mitigation options, we set up multiple scenario specifications to

develop the reduction potential projection. Figure S3 in the supplemental infor-

mation summarizes the research approach.

In step 1, we develop a taxonomy for the studied households through data

mining and a multi-dimensional clustering method (see ‘‘integrated clustering

method’’). To do so, we use household-level data from the Japanese house-

hold energy use survey (HEUS) conducted by the Ministry of the Environment

(MOE) over the 2017–2018 period, with appropriate processing (see ‘‘data

preparation’’). This approach represents a significant deviation from traditional

methods of grouping households based on specific characteristics for emis-

sion estimation that typically rely on expert judgment and consider only single

dimensions or characteristics. Such conventional grouping approaches may

produce inaccurate results by failing to account for multiple dimensions that

influence emissions, as highlighted in the introduction. For example, higher-in-

come households tend to also have higher emissions than lower-income

households, although this tendency may also be driven by the fact that the

former use more efficient appliances and houses with higher energy

needs.98,99 Such a mismatch may introduce uncertainties in the emission

calculations.100

For this reason, our study groups households across five dimensions: (1) in-

come, (2) household size, (3) the average age of household members, (4)

driving demand, and (5) children. These five household characteristics serve
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as the foundation for the study’s group taxonomy and were identified through

the LASSO method after filtering for characteristics expected to have a signif-

icant impact on variations in per capita emissions across households (Fig-

ure S4, supplemental information). The household characteristics evaluated

through the LASSO method are selected and filtered by matching variables

from survey data with variables in existing studies,72,98 resulting in a more

nuanced household taxonomy comprising six household groups (Figure S5,

supplemental information). Overall, this approach aimed to identify distinct

household groups for further analysis by maximizing differences between

them while minimizing variations within each group.

In step 2, we estimate the per capita emissions of each household group, us-

ing common household expenditures and fuel consumption data from the

HEUS outlined above (see ‘‘data preparation’’). We focus on direct household

energy use instead of indirect emissions embodied in goods and ser-

vices101,102 (see ‘‘estimation of direct emissions’’). The results of this analysis

are included in the first sub-section of the results. Notably, both of these sce-

narios assume for each of the six groups the same energy consumption pat-

terns and adoption rates for mitigation options, as estimated for the 2017–

2018 period (see steps 1–2).

In step 3, we first show two different emission trends considering demo-

graphic factors, namely the baseline scenario with no demographic change

up to 2040 and the reference scenario that considers a dynamic population

structure scenario due to demographic change. Although the baseline sce-

nario is certainly far from reality, the comparison with the reference scenarios

could provide insights into how demographic change can significantly alter

household emissions in the country (results are given in Figures 3A–F). In addi-

tion, demographic change will not be the only factor that could impact future

household emissions. Therefore, we create three further sub-scenarios for

projecting how energy efficiency improvement (EFI) for home appliances,

and EV and NEV adoption, could impact per capita emissions from the entire

household sector considering the demographic make-up of the household

sector in the reference (which assumes dynamic population structure). Here,

wemust note that, according to estimates in the literature on energy consump-

tion in the household sector, the energy intensity (energy consumption per de-

vice) of household activities may decrease significantly if the best available

technologies are adopted.103 Furthermore, long-term improvements in the

supply chain energy conservation rate will also largely impact energy use

and emissions in the household sector.104 Therefore, the sub-scenarios out-

lined above consider not only the dynamic demographic transition and the

adoption of PVs and NEVs considering future household structure but also

EFI in household appliances and changes in power generation efficiency.104

Considering the above, these families of sub-scenarios essentially assume

that the potential impact on energy use and emissions from the household

sector may come from both the consumption side (i.e., home appliance EFI,

and consumption behavior change and PV/NEV adoption change due to de-

mographic change) and the production side (i.e., energy efficiency change

from power generation). We do this for different ambition levels as described

below. First, by referring to the survey on actual CO2 emissions in the house-

hold sector published by the MOE, Japan,105,106 we set the household appli-

ance EFI target for 2050 according to the official report. To account for the

timeframe of our analysis (2040) we separate the target into achieved as

planned (i.e., achieved in 2050, and linearly interpolating the progress for

2040) and achieved accelerated (i.e., the 2050 target will be achieved in

2040). This target setting reflects official Japanese governmental reports.

Additionally, for better comparison with other previous work, we use one

more ambition level from previous work on LED.103 Thus far, we have two de-

mographic scenarios (baseline, reference) and three ambition sub-scenarios

(LED, accelerated, planned).

Finally, we take into account the future penetration rates of PVs and NEVs in

the household sector by decomposing the 2030 and 2050 climate targets from

the literature in a linear or ambitious (ahead-of-schedule) manner. For the

ahead-of-schedule decomposition, it is presumed that the 2050 net-zero

target will be achieved earlier, by 2040. This is realized by making a linear

decomposition of the original target from 2025 to 2040. More details can be

found in Section S4 in the supplemental experimental procedures.
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Collectively, the above results in the 12 scenarios explored in Figure 3G.

Deeper explanations of the scenarios are included in Table S3 in the supple-

mental information.
Data preparation

Household emissions can be estimated through top-down or bottom-up ap-

proaches. The former generally require macro-level data derived from input-

output tables. The latter are more data-intensive, entailing statistical analysis

and aggregation ofmicro-level data on direct and indirect energy consumption

by individual households. Although input-output tables can be connected to

micro-level consumption data at the household level, they usually have a

low resolution up to the prefecture-level in most countries (there are also ef-

forts to develop such tables at the city scale but these are characterized by

large uncertainty). Furthermore, household consumption data are generally re-

ported in an aggregated form, which complicates analysis. Such data avail-

ability challenges usually underpin efforts to accurately estimate energy use

and emissions at the household level.

In this study, we use household-level data collected through the HEUS over

the 2017–2018 period. To note, within the context of Japan, a fiscal year

conventionally spans from April 1 to March 31 of the following year, aligning

with the time frame encompassed by the dataset employed in our study.

The HEUS covers a nationally representative sample of 9,996 individual house-

holds across all 47 Japanese prefectures, capturing demographic character-

istics, socioeconomic status, energy use, and property characteristics.

Initially, after exploring the data, we removed surveys with incomplete or

problematic data to avoid possible biases in estimating the emission reduction

potentials (see Section S1, supplemental experimental procedures). This

applied to a total of 1,008 households that (1) did not have valid records for

their building space (332 households) and (2) exhibited differences of >0.01

tCO2 between the reported total emissions and the sum of emissions esti-

mated for individual household activities (i.e., space heating, space cooling,

water heating, appliances, cooking, vehicle use) (676 households).

Furthermore, to facilitate the clustering process, we select the most relevant

variables explaining household emissions contained in the HEUS and trans-

form them into numeric or categorical variables (Section S2, supplemental

experimental procedures). The selection of all relevant variables is based on

existing studies72 that identify the factors contributing to household emissions.

This amounts to 65 variables, including variables related to family size, income,

energy use, and transportation behavior, among others. We apply a Z score

normalization method to eliminate possible biases (see the normalized vari-

ables in Table S4, supplemental experimental procedures).
Integrated clustering method

By integrating supervised and unsupervised learning modules, we develop a

simplified two-stage clustering approach to develop a taxonomy of house-

holds based on various household characteristics (see step 1, research

approach, experimental procedures). We consider the clustering method to

be more efficient and appropriate for pattern recognition in household survey

data based on the following factors: (1) the use of multiple regression methods

requires a clear causality107; (2) excessive number of variables in multiple

regression methods can increase model noise and reduce accuracy108,109

and can lead to problems of overfitting and multicollinearity110; and (3) clus-

tering is more conducive to highlighting the differences between categories

with relatively low algorithmic complexity.12,111

First, we select all the possible quantitative variables related to household

energy consumption from the survey and filter thembased on the literature72,94

to identify the significant household characteristics that explain household

emissions. We convert the input data from the HEUS and fit them to emissions

per capita data through a LASSOmodel.112 The LASSOmodel is fitted bymini-

mizing the following cost function:
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wherem is the total number of observations, a is the intercept, yi is the depen-

dent variable, l is a non-negative regularization parameter, and bj is the coef-

ficient of independent variables.

The value of l controls the entry of variables trained by themodel. The higher

the value of l, the higher the number of variables whose coefficients are zero.

Therefore, this parameter is crucial for clustering and can be optimized by

minimizing the fitting error, i.e., the mean square error (MSE). By applying a

grid searching strategy with values of l ranging from 0.001 to 0.1 (with a

step equal to 0.001) for the optimal model output, we find that 0.006 is the

optimal parameter value for the LASSOmodel, which results in the highest per-

formance. Then, after applying the LASSO model,112 we retain only 25 vari-

ables that have an importance of over 0.04 (see Figure S5, supplemental infor-

mation). Table S1 in the supplemental information contains the complete list of

variables selected for the subsequent analysis.

Second, we develop the actual household taxonomy. To achieve this, based

on the selected variables, we apply the K-means method, which is one of the

prevailing unsupervised learning approaches that fit well with multi-dimen-

sional datasets.113 However, as K-means clustering cannot automatically pro-

duce an optimal number of clusters, we iteratively search for the optimal num-

ber of clusters. The performance of the clustering process is assessed through

the silhouette coefficient.114,115 Additionally, we impose another constraint to

ensure that each cluster contains no fewer than 50 households. The number of

clusters obtained through the K-means method is 6, which is optimized by

maximizing the silhouette score using the selected variables as 25-dim input

data. This process is described in more detail in Figure S2 (supplemental infor-

mation). The clusters are further categorized based on five dimensions, namely

household income, household size, average age, driving frequency, and

whether the household has children, as these are the five most essential di-

mensions affecting emissions recognized in the LASSOmodel. Figure S6 (sup-

plemental information) provides a simplified description of the household tax-

onomy. Table S5 (supplemental information) suggests that households for a

given group are not clustered in a specific geographic region and that their dis-

tributions is almost random within the country.

To validate the output of the integrated clustering method, we make com-

parisons between clustering and socioeconomic groups (Figure S7, supple-

mental information). In Figure 3, the differences in per capita emissions among

household groups aremagnified. Given the top five factors affecting emissions

outlined above, the clustering method minimizes the intra-group differences

and maximizes the inter-group differences. Although we do not directly use

emissions per capita as a dependent variable in the analysis, the differences

among groups are still identified by the unsupervised learning method.

Estimation of direct emissions

To estimate the household-level emissions for each group, the survey adopted

for our study uses a bottom-up emission accounting method. First, energy

uses related to scope 1 and scope 2 emissions are accounted for, including

various fuels and electricity. Second, in terms of various energy types, the sur-

vey collects household energy uses and subsequently estimates emissions on

the basis of the adjusted emission factors in our previous study. Therefore, the

aggregate emissions of a household are the sum of all subsidiary emissions

from using electricity and primary energy. In addition, the aggregate emissions

are consistent with the sum of emissions from household energy demand,

including electric appliances, transportation, space heating, space cooling,

and water heating, among others. The detailed information of the carbon emis-

sion survey is collected directly by the MOE of Japan (https://www.env.go.jp/

earth/ondanka/ghg/kateiCO2tokei.html).

Future prevalence of the study groups

To generate the results shown in Figure 3, we conduct two scenario analyses

to estimate the future of the studied household groups in 2025, 2030, 2035,

and 2040: (1) a ‘‘baseline scenario’’ that assumes that the household structure

is the same as it is currently (i.e., there is no demographic transition and the

proportion of the six groups in the projected population remains the same as

in the base years 2017–2018) and (2) a ‘‘demographic transition scenario’’

that varies the proportion of the different groups in the projected population.

For both scenarios, the projected population data for Japan are provided by

the National Institute of Population and Social Security Research (IPSS,
https://www.ipss.go.jp/index-e.asp) and we match them with the household

taxonomy developed above. We do so by fixing the age and family structures

as follows. First, we divide the projected population of 14–84 years old into 15

age groups (i.e., at 5-year intervals), with those ‘‘>85 years old’’ constituting a

separate group. Second, we cross-map the family types from the projected

population data (i.e., single, couple, single with children, couple with children,

and others) to the family types from the survey data (i.e., single, couple, single

with children, couple with children, single elderly [>60 years old], couple elderly

[>60 years old], large family [family size > 4], and others). Themapping process

is described precisely in Section S3 in the supplemental experimental

procedures.

To calculate the projected number/population of each household group for

2025, 2030, 2035, and 2040, wemeasure the distribution of households by age

and family typeDk
ab for household segment k, where a;b represent the age and

family type dimensions for the matrix. In our population projection approach,

we establishmapping between age and family type groups from the HUES sur-

vey and the National Institute of Population and Social Security for Japan

(NIPSSR) population projections. We leverage the NIPSSR population projec-

tions to infer population estimates for each combination of age and family type

groups identified in the HEUS data, ultimately obtaining prevalence projec-

tions for the six household groups by multiplying these estimates by the

respective proportions of each age and family type group within each house-

hold cluster (see details in Section S3, supplemental experimental proced-

ures). By multiplying by the projection population data Pabt , the future num-

ber/population for a given household group is calculated through Equation 2

as follows:

Pk
t =

XX
Dk

ab 3Pabt (Equation 2)

Estimation of future mitigation potentials

We obtain the results shown in Figure 3G by using the emissions in the refer-

ence scenario as the base (see future prevalence of the study groups, method-

ology), as it offers a better approximation of the make-up of the Japanese

household sector in the future. Then, for each household group, we measure

the effects of EFI, and PV and NEV adoption, on household emission intensity

and calculate the emission reduction potential due to PVs, NEVs, and lower

grid emission factors (see Section S4, supplemental experimental

procedures).

We estimate the conditional probability that a household adopts PVs or

NEVs, incorporating the dynamics of technological advances and household

preferences for technology adoption through logit models, given their pre-

adoption features.116,117 The propensity can be expressed as follows:

pðXÞ = Prðadopt = 1jXÞ (Equation 3)

where X represents the pre-adoption features of households. The logit regres-

sion model is defined as follows:

ln

�
pðXÞ

1 � pðXÞ
�

= b0 + biXi + ei (Equation 4)

Notably, PV installation costs or NEV costs are not included in the set of pre-

adoption features because the HEUS dataset does not provide detailed infor-

mation about the adoption time of PV and NEV technologies for households.

This lack of information makes it difficult to provide accurate cost estimations

for technology adoption.

In this case, we define the penetration rate of PVs and NEVs as the ratio of

willing-to-adopt households to unwilling-to-adopt households. Because it is

not clear whether households are willing to purchase emission mitigation tech-

nologies as advanced low-carbon technologies are emerging, we assume that

the future willingness of household groups to adopt PVs/NEVs is the same as it

is currently. The probabilities of adopting PVs and NEVs range from 0%–

91.4% and 0%–44%, respectively, depending on the group, with mean prob-

abilities of 6.9% and 1.3%.

The PV/NEV penetration rate of each household group is calculated as fol-

lows. First, we decompose the general penetration rate for the whole
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population into subsidiary penetration rates for each household group. The

penetration rate ck for household group k can be viewed as the accumulated

distribution of households possessing higher propensity scores than the

threshold xa. In other words, the percentage of households that are willing to

adopt mitigation technologies over the whole population is:

ck =
NkðXjXR xaÞ

Nk

(Equation 5)

This equation can also be written as c = 1 � PðX % xaÞ, where X is the

random variable denoting the propensity score of households for mitigation

technology adoption. Therefore, given threshold xa, households with propen-

sity scores higher than xa will be considered as adopters in the scenario.

Ultimately, household emission scenario projections take into account fac-

tors from two aspects, namely energy intensity decline and mitigation technol-

ogy adoption. We denote the household emission projection as Et;i (household

i’s total amount of emissions in year t), and it can be expressed as follows:

Et;i = Et0;i �
X5

j
RjAijEFt;j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
activity

� DEFt;elecCpvEt;elec|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
electricity

� ð1 � CnevÞEt;nev|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
vehicle

(Equation 6)

where Et0;i represents household i’s total amount of emissions in 2018. The to-

tal household emissions in year t are composed of three parts: emissions from

activities (except vehicles), electricity consumption, and vehicles. Et;i will be

affected by (1) the ratio of energy intensity decline Rj , which is related to the

increase in electrification; (2) emission reductions from the lower grid emission

factor DEFt and PV adaptation coefficient Cpv ; and (3) emission reductions

from switching to NEVs with the coefficient Cnev . In addition, Et;elec denotes

emissions from electricity use and Et;nev denotes emissions from vehicles.

The estimated emission reduction potentials of PVs and NEVs are listed in

Table S6 in the supplemental information.
Limitations and uncertainty

Several limitations should be acknowledged when interpreting the results of

this study. First, the use of a single clustering method may affect the robust-

ness of the results. The LASSO model used here was instrumental in identi-

fying influential variables for our analysis (namely income, household size,

average household age, driving demand, and presence of children). Although

these variables are interdependent to some extent—for instance, household

size naturally correlates with the presence of children—our model’s focus

was on using these variables as distinct classification points. Consequently,

the LASSO model’s structure emphasized variable selection rather than

exploring the complex interactions among them. Acknowledging the impor-

tance of these factors, future research should investigate these interactions

more thoroughly and test alternative algorithm-based clustering methods,

which can be populated with survey data to validate the clustering approach.

Second, we made a series of assumptions that might have introduced un-

certainties in the modeling process. For instance, the acceptance thresholds

for the adoption of emission mitigation technologies are unlikely to be verified

with real-world data. From the perspective of the simulation, the different

thresholds indicate only different offset levels (which will not affect our find-

ings). Using different models to estimate acceptance rates may affect the

penetration rates of PVs and NEVs in the projection population. In this sense,

as the current penetration rates are relatively low, it is difficult to accurately

extend our data to 2040, as there is the possibility of major disruptions in the

NEV and PV markets.118,119 Notably, as only 1% of the samples are NEV

adopters, the NEV results may be biased due to insufficient data. However,

as current NEV adopters can still provide some important clues for future pro-

motion, this survey should be updated every year to provide more data in the

future. In contrast, the effects of aging and the increase in single-person

households hold great significance for emission patterns. Here, we make as-

sumptions about the constant willingness to purchase PVs and NEVs, which

may increase or decrease subject to policy signals, and the availability and

price of low-carbon technologies in the future.120,121 In this case, to reduce

model uncertainty, future studies could conduct sensitivity analyses to offer
12 Cell Reports Sustainability 1, 100053, March 22, 2024
more accurate prediction ranges or primary data collection to precisely

describe thewillingness of adoption (e.g., through choice experiments or other

similar techniques).
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